「Radarの必要性と、最近の進化」

発表者プロフィール

■ 神奈川工科大学

- ■天野 義久
- y.amano@cco.kanagawa-it.ac.jp

元は電機業界の高周波無線通信回路屋でした。

自動車業界に来たタイミングでちょうど高周波技術 の結晶であるミリ波レーダが車に普及し始め、その 波に乗ってミリ波レーダ技術者(ハード・信号処理ソ フト)へ転身しました。

更にDIVPに参加したことが縁で、現実世界のレーダ 技術者から、仮想世界の3大センサ技術者への成 長を目指しています。

■ 電機メーカ (京セラ、シャープ) にて、無線通信回路、電磁 界シミュレータ、ワイヤレス給電等を開発。

経歴

- 2013年~ 自動車部品メーカ (ユーシン) にて、ミリ波レーダ を核としてADAS技術全般を研究。
- 2021年~ DIVPプロジェクトに参画。前任者(デンソー)から 引き継ぎミリ波レーダモデル開発を担当。
- 2023年~ 神奈川工科大へ転職しDIVP専任に。

背景 / 目的

- ■全国100ヶ所のうち具体化した十数件を調査すると、気象(霧・雪等)的な課題が目立つ。業界トップレベルの気象再現力を持つDIVP-PFを活かし、現実の十数ヶ所の気象データを入力することで、課題の定量的明確化と、解決策提案を行う研究を、今年度進めている。
- ■その解決策の柱が、耐環境性で優るミリ波レーダ。前提として、今ミリ波レーダ界で進む画質の大幅向上動向を紹介する。
- ■全国100ヶ所のうち具体化した十数件の、気象的な課題について
- ■全国100ヶ所への貢献ビジョン
- ■ミリ波レーダの耐環境性について
- ■ミリ波レーダの最近の画質大幅向上の動向について

骨子

Radarの必要性と、最近の進化

神奈川工科大学 特任研究員 天野

Weather Forecast

AD safety Assurance

For Validation & Verification Methodology

*AD : Automated driving

本日は、昨年度に達成した内容の講演が多いですが、 本講演は、今年度始めた内容の講演になります。

全国100ヶ所のうち具体化した十数件の、気象的な課題について 全国100ヶ所への貢献ビジョン ミリ波レーダの耐環境性について 3 ミリ波レーダの最近の画質大幅向上の動向について まとめ 5

1	全国100ヶ所のうち具体化した十数件の、気象的な課題について
2	全国100ヶ所への貢献ビジョン
3	ミリ波レーダの耐環境性について
4	ミリ波レーダの最近の画質大幅向上の動向について
5	まとめ

着実に実現しつつある、全国100ヶ所以上の定常運行。

政策①: レベル4認可

1	福井県 永平寺町
2	東京都 羽田イノベーションシティ
3	神奈川県 相模原市 物流拠点
4	宮城県 気仙沼BRT

政策②: 高速道路の 自動運転レーン

24年度	新東名 (駿河湾沼津~浜松 100km)	
26年度	東北自動車道	
33年度	東北地方から九州地方までを結ぶ。	

政策③: 一般道での 定常運行

		・北海道 上士幌町 ・新潟県 弥彦村	·石川県 小松市 ·福井県 永平寺町
23年度	13ヶ所で実現済み	·茨城県 日立市 ·茨城県 境町 ·千葉県 横芝光町 ·東京都 大田区 ·愛知県 日進市	・岐阜県 岐阜市 ・三重県 多気町 ・愛媛県 伊予市 ・沖縄県 北谷町
24年度	全国 20ヶ所以上で実現 全国 50ヶ所以上で実現		
25年度			
27年度	全国100ヶ所以上で実現		

○自動運転について、国際標準化も見据え、2025年度目途 50ヵ所程度、2027年度 100ヵ所以上の目標を実現³³ するべく、 2024年度において、社会業後につながる「一般道での選手連行事業」を20ヵ所以上に信増するとともに、自動運転のすそ野 拡大を図るため、全ての各種遺房祭で1ヵ所以上の計画・通行各目指す。

○交差点等での円滑な走行を支援する「路車協調システム」の整備など、道路側からの支援も推進する。

岐阜県岐阜市

地域公共交通等における自動運転の推進

沖縄県北谷町

出典: 国交省「地域公共交通等における自動運転の推進」

https://www.cas.go.jp/jp/seisaku/digital_gyozaikaikaku/kaigi1/kaigi1_siryou9.pdf

3) 高速道路においても自動運転レーンを活用した自動運転トラック

◎ 国土交通省

※デジタル用南部市国家維持総合戦略(2022年12月間議決定

気象的な課題は、大きく2つ。

政策①: レベル4認可

1	福井県 永平寺町
2	東京都 羽田イノベーションシティ
3	神奈川県 相模原市 物流拠点
4	宮城県 気仙沼BRT

政策②: 高速道路の 自動運転レーン

24年度	新東名 (駿河湾沼津~浜松 100km) -
	東北自動車道
33年度	東北地方から九州地方までを結ぶ。

政策③: 一般道での 定常運行

		・北海道 上士幌町 ・新潟県 弥彦村	·石川県 小松市 ·福井県 永平寺町
23年度 13ヶ所で実現済み	・茨城県 日立市 ・茨城県 境町 ・千葉県 横芝光町 ・東京都 大田区 ・愛知県 日進市	·岐阜県 岐阜市 ·三重県 多気町 ·愛媛県 伊予市 ·沖縄県 北谷町	
24年度	全国 20ヶ所以上で実現		
25年度	全国 50ヶ所以上で実現		
27年度	全国100ヶ所以上で実現		

高速道路および BRTでは が課題。

一般道では 全国約1/3~1/4が 降雪地帯になると予想でき、 雪が課題。

出典: 国交省「地域公共交通等における自動運転の推進」

https://www.cas.go.jp/jp/seisaku/digital_gyozaikaikaku/kaigi1/kaigi1_siryou9.pdf

国土交通省

高速道路 およびBRT で目立つ課題 = 霧

新東名 高速道路

出典: youtube「新東名 濃霧走行」 https://www.voutube.com/watch?v=YXs6T2hVSqE

北関東は未明から濃霧に 東北道など9時間通行止め

[2014/11/13 10:34]

冷え込む北関東に濃霧 東北道など9時間通行止め NEWS 午前8時ごろ 木村 成一 **₹**レ朝 ▶news

出典: https://news.tv-asahi.co.ip/news_society/articles/000038687.html

気仙沼 **BRT**

気仙沼氣嵐

冬を告げる幻想的な景色「気嵐」を知っていますか?

海で発生する蒸気霧。観光資源になっている。

出典: 気仙沼観光推進機構 https://kesennuma-kanko.jp/kearashi/

東北

自動車道

一般道のうち全国の1/3で目立つ課題 = 雪

自治体	冬季の定常運行
北海道 上士幌町	運行中
新潟県 弥彦村	検討中
石川県 小松市	検討中
福井県 永平寺町	運行しない

上士幌町の事例から、課題発掘が可能。

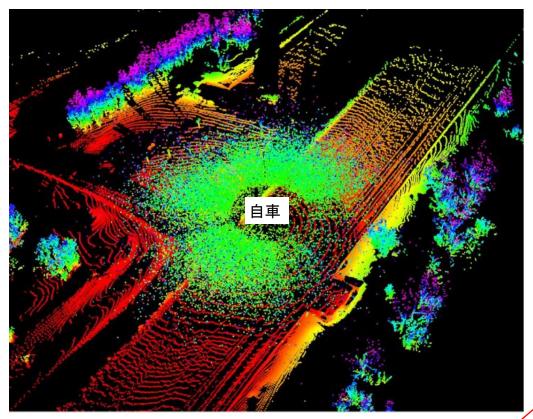
出典: BOLDY社(ソフトバンク社) https://www.softbank.jp/sbnews/entry/20230313_02?page=02#02

出典: https://kamishihoro-horology.com/living/4693/

あまり課題視されていない。

積雪

- ・車両(Navya Arma)はもともと、白線検知に頼らない設計である。
- ・積雪が10cmを超えると除雪車が出動し、10cm以下に抑えられる。


陸雪

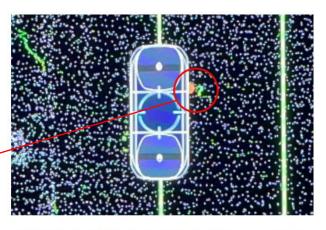
次ページの通り、こちらが最大の課題と認識されている。

霧や降雪の何が問題なのか?

LiDARは、空中の霧や雪を偽点として検出してしまう。

出典: DIVP実験例(雪)

現在のトレンドでは、 偽点は数学的<mark>ノイズフィルタ</mark>で除去すれば良い、 という考え方。 出典 https://www.softbank.jp/sbnews/entry/20230313_02?page=02#02 ソフトバンクニュース

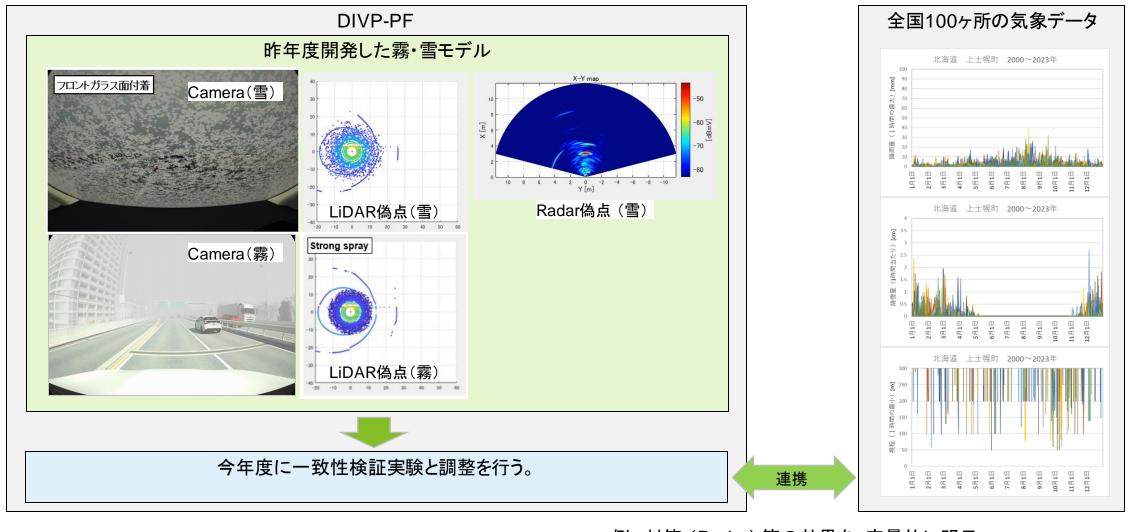

2023-03-13

雪の中を走る自動運転バス。冬の定常運行で見えてきた課題 とこれから

雪は「障害物」?雪が降るとバスが止まってしまう… その解決策とは

しかし、 車体境界すれすれの ∠ <mark>偽点数個を除去し損ね、</mark> 車が停止するトラブルが 起きている模様。

雪を障害物として検知したときの画像。事象を一つ一つ丁寧 に確認する地道な作業

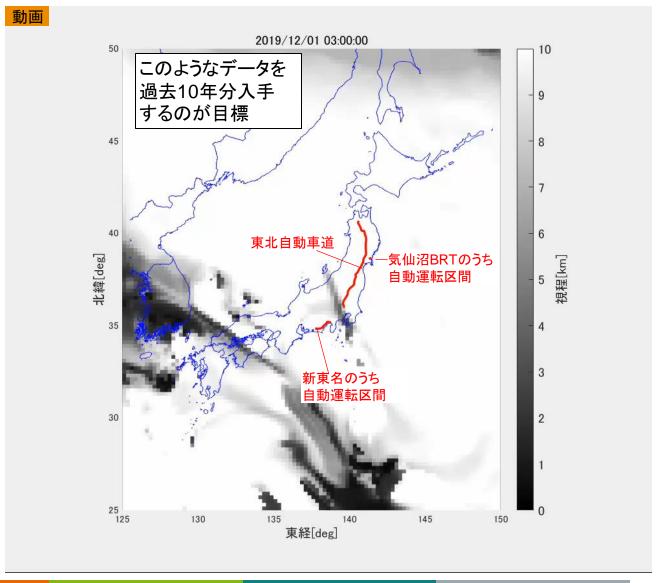

(上図)上士幌町で自動運転バスを運行する、BOLDLY社の課題認識。 (私の意見)根本的に、偽点ノイズを抑えるミリ波レーダも積極検討すべき。

1 全国100ヶ所のうち具体化した十数件の、気象的な課題について 2 全国100ヶ所への貢献ビジョン ミリ波レーダの耐環境性について ミリ波レーダの最近の画質大幅向上の動向について

世界トップレベルの環境再現性を持つDIVP-PFと、気象データとの連携

例:対策(Radar)等の効果を、定量的に明示。

例: 最悪条件や発生確率から、年間の運休率を推定。

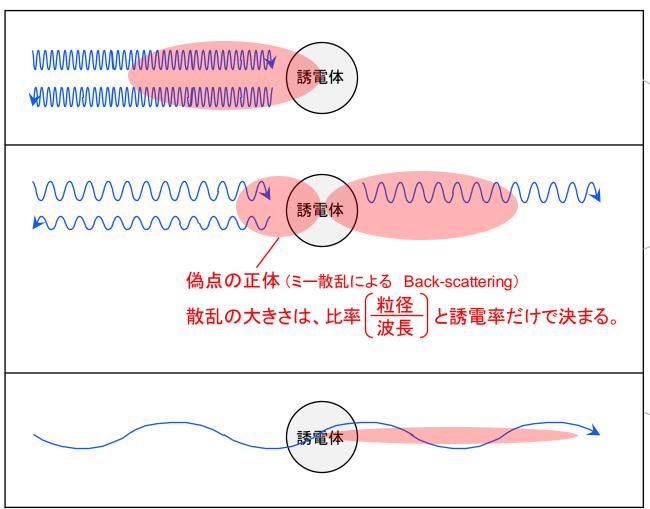


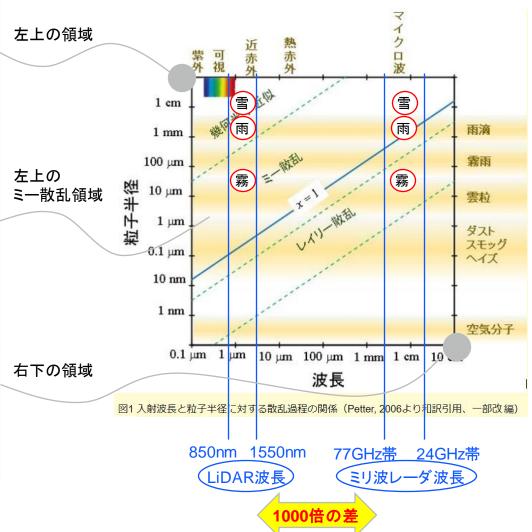
気象データ収集に向けて、皆様の協力をお願い致します。

本日は、昨年度に達成した内容の講演が多いですが、 本講演は、今年度始めた内容の講演になります。

現在相談中の 団体	一般財団法人 気象業務支援センター一般財団法人 日本気象協会民間の気象情報会社 数社
これから相談予定の	・NEXCO中日本
団体	・NEXCO東日本

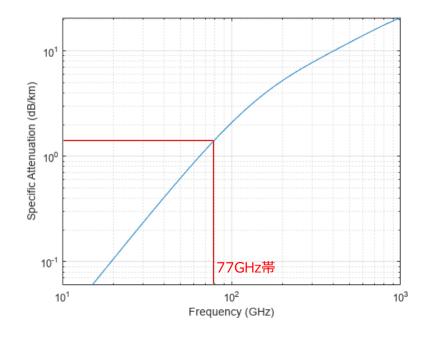
何か情報をお持ちの方は御協力をお願い致します。





1	全国100ヶ所のうち具体化した十数件の、気象的な課題について
2	全国100ヶ所への貢献ビジョン
3	ミリ波レーダの耐環境性について
4	ミリ波レーダの最近の画質大幅向上の動向について
5	まとめ

ミリ波レーダの波長が、LiDARより1000倍も大きいことが、霧・雨・雪では有利に働く。


出典: 日本エアロゾル学会「Aerosolpedia」

(参考) ミリ波が霧にほぼ影響を受けないことは、無線通信界で確認済み。

「霧および雲によるRF信号の減衰量に関する国際電気通信連合 (ITU: International Telecommunication Union) 勧告」

Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R P.840-6: Attenuation due to clouds and fog. 2013.

霧中のミリ波減衰 = 100m当たり0.04dB程度。 つまり、ミリ波レーダは霧の影響をほぼ受けない。 Matlabをお持ちの方は、
「Radar Toolbox」に組込み関数「fogpl」として入っており、
気軽にお試し頂けます。

L = fogpl(R, freq, T, den)

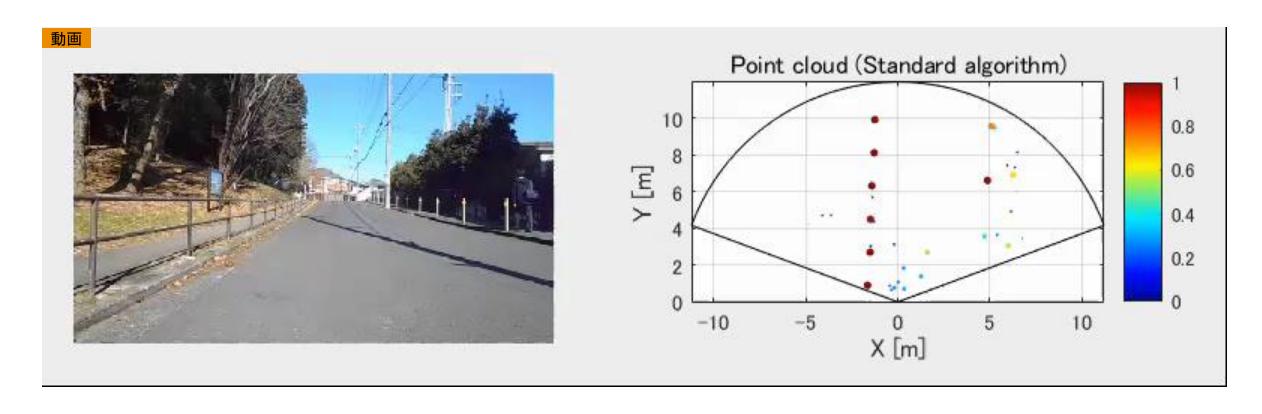
L:信号が霧または雲の中を伝播 するときの減衰

R :信号のパス長

freq:信号の搬送波周波数

T:周囲温度

den:霧または雲の中における液体の水の密度



1	全国100ヶ所のうち具体化した十数件の、気象的な課題について
2	全国100ヶ所への貢献ビジョン
3	ミリ波レーダの耐環境性について
4	ミリ波レーダの最近の画質大幅向上の動向について
5	まとめ

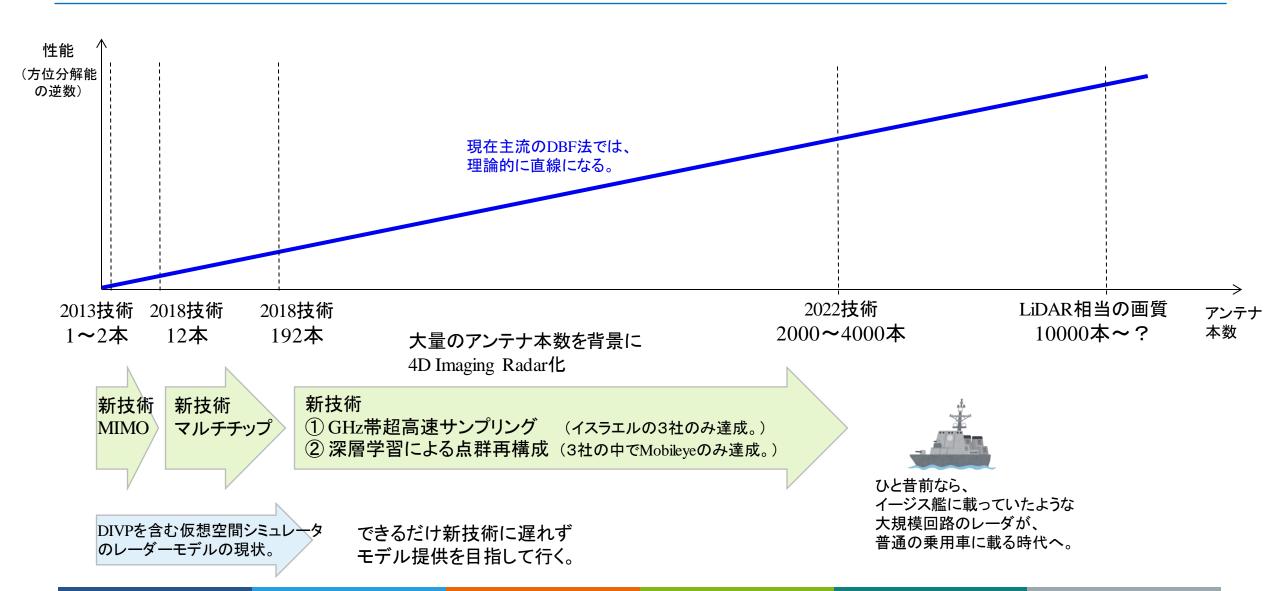
2018年に登場した技術の画質例

いくら耐環境性が高くても、LiDARよりも画質が大きく劣るようでは、用途が限定される。 レーダ画質の現状はどのようなものか?

この時代の技術でも既に、そこそこの画質が見え始めていた。

2022年に登場した技術の画質例

CES2022でのMobileye社講演 「CES 2022 Under the Hood An Hour with Amnon」https://www.youtube.com/watch?v=1mXy0oi8d60&t=56s



2つの新技術によって、RadarでもLiDARと同等の点群画像を得られた。

- ① GHzサンプリングにより、アンテナ本数を2000本オーダへ。(※本講演の中では触れず。)
- ② 深層学習による点群画像の再構築。

レーダでは「アンテナ本数 = 画質」。新技術が段階的にアンテナ本数を増やしてきた。

全国100ヶ所のうち具体化した十数件の、気象的な課題について 2 全国100ヶ所への貢献ビジョン ミリ波レーダの耐環境性について ミリ波レーダの最近の画質大幅向上の動向について まとめ 5

・全国100ヶ所が着実に実現しつつある中、課題の一つとして気象条件がある。

高速道路、BRT	霧
一般道(全国の1/3~1/4)	冊

- ・波長が短いLiDARでは、偽点が大量に発生する。 上士幌町の事例を見ると、ノイズフィルタだけで偽点を全て除去できるか疑問。 波長が長いミリ波レーダも平行して検討することが望ましい。
- DIVPでは、霧・雨・雪による偽点モデルを昨年度開発した。 今年度実用化し、上記議論を定量的に行える環境提供を目指す。
- ・ミリ波レーダは画質でLiDARより大きく劣っていたが、 新技術によってLiDARに迫る画質の報告も出てきている。DIVPでは、レーダモデルへのこれら新技術の取り込みも目指して行く。

Thank you for your kind attention!

Tokyo Odaiba → Virtual Community Ground

END

